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Abstract

An adaptive finite element method is developed for a class of free or moving boundary problems modeling island

dynamics in epitaxial growth. Such problems consist of an adatom (adsorbed atom) diffusion equation on terraces of

different height; boundary conditions on terrace boundaries including the kinetic asymmetry in the adatom attachment

and detachment; and the normal velocity law for the motion of such boundaries determined by a two-sided flux,

together with the one-dimensional ‘‘surface’’ diffusion. The problem is solved using two independent meshes: a two-

dimensional mesh for the adatom diffusion and a one-dimensional mesh for the boundary evolution. The diffusion

equation is discretized by the first-order implicit scheme in time and the linear finite element method in space. A

technique of extension is used to avoid the complexity in the spatial discretization near boundaries. All the elements are

marked, and the marking is updated in each time step, to trace the terrace height. The evolution of the terrace

boundaries includes both the mean curvature flow and the surface diffusion. Its governing equation is solved by a semi-

implicit front-tracking method using parametric finite elements. Simple adaptive techniques are employed in solving the

adatom diffusion as well as the boundary motion problem. Numerical tests on pure geometrical motion, mass balance,

and the stability of a growing circular island demonstrate that the method is stable, efficient, and accurate enough to

simulate the growing of epitaxial islands over a sufficiently long time period.
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1. Introduction

We develop an adaptive finite element method for a class of free or moving boundary problems that
model the island dynamics in epitaxial growth of thin films.

Epitaxial growth is a technology for growing single crystal thin films by depositing atoms and molecules

onto an existing substrate. Ideally, such technique can produce high quality materials for device applica-

tions. Microscopic processes in epitaxial growth include the deposition of atoms or molecules, atom ad-

sorption and desorption, adatom (adsorbed atom) diffusion, adatom island nucleation, the attachment and

detachment of adatoms to and from island boundaries or terrace steps, and island coalescence [4,17,28,40].

There are various kinds of models for epitaxial growth of thin films that are distinguished by different

scales in time and space. Among them, continuum models can describe film surface morphology, predict
long time growth laws in terms of scaling, and determine thermodynamic variables. One class of continuum

models are the Burton–Cabrera–Frank (BCF) type island dynamics models, cf. [6,7,9,15,22,28]. Such a

model is essentially a free or moving boundary problem that consists of a diffusion equation for the adatom

density on islands or terraces, boundary conditions for the moving terrace boundaries, and a velocity law

for the motion of such boundaries. This moving boundary problem has the following distinguished fea-

tures: First, terraces have different heights. Thus, the description of the growth is continuous in the lateral

directions but discrete in the growth direction. Second, the adatom flux to the terrace boundary is two

sided, from both upper and lower terraces. And third, the normal velocity of the moving terrace or island
boundaries is determined by the attachment–detachment kinetics and can include one-dimensional ‘‘sur-

face’’ diffusion of edge-adatoms – atoms that are diffusing along terrace boundaries.

We consider the attachment–detachment kinetics in the boundary condition for terrace boundaries that

includes the Ehrlich–Schwoebel effect. In a typical step-flow or layer-by-layer epitaxial growth of thin films,

adatoms diffuse on a terrace and likely hit a terrace boundary. In order to stick to the boundary from an

upper terrace, an adatom must overcome a higher energy barrier – the Ehrlich–Schwoebel barrier

[13,36,37]. This asymmetry in attachment and detachment of adatoms to and from terrace boundaries has

many important consequences: it induces an uphill current which in general destabilizes nominal surfaces
(high symmetry surfaces) [13,36,37], but stabilizes vicinal surfaces (surfaces that are in the vicinity of high

symmetry surfaces) with large slope, preventing step bunching [41]; it also leads to the Bales–Zangwill

morphological instability of atomic steps [1,31]. Finally, it contributes to the kinetic roughening of film

surfaces [20,29,41].

Caflisch et al. [7] have recently developed a class of island dynamics models based on step edge

(terrace boundary) kinetics that involve not only the step edges or terrace boundaries and the adatom

density but also the density of edge-adatoms and the density of kinks along terrace boundaries. Based on

such kinetic models, Caflisch and Li [9] have derived a set of boundary conditions for the adatom density
that includes line tension and attachment–detachment kinetics, and a normal velocity law that includes

the one-dimensional ‘‘surface’’ diffusion, cf. Fig. 1. Various parts of these boundary conditions and the

velocity formula have been recently suggested and partially derived based on thermodynamics

[18,22,27,28,30]. In this work, we use these boundary conditions and normal velocity law, modified to

include the convection terms in the flux, the Ehrlich–Schwoebel effect, and the one-dimensional ‘‘surface’’

diffusion.

In developing our finite element method, we naturally divide our underlying problem into two parts: the

adatom diffusion and the boundary evolution:
1. We derive a weak formulation for the time-dependent diffusion equation. In this formulation, the effect

of the convection terms in the flux is implicitly included through the boundary conditions. To avoid the

complexity in the spatial discretization near boundaries, in each time step, we extend the diffusion equa-

tion from terraces of same height to the whole computational domain. The extended equation is discret-

ized using the linear finite element method. The resulting linear system is symmetric positive definite, and



Fig. 1. One-dimensional ‘‘surface’’ diffusion.
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is solved by the conjugate gradient method. In order to trace the terrace height, all the elements are

marked, and the marking is updated in each time step.
2. The geometric motion of the island boundaries includes both the mean curvature flow and the surface

diffusion. It is treated in a variational formulation utilizing the curvature vector, and discretized by a

semi-implicit front-tracking method using parametric finite elements. This method is adapted with mod-

ification from [2,3,12].

We remark that the two-dimensional (2d) and the one-dimensional (1d) finite element meshes are es-

sentially independent from each other. They are only coupled by corresponding right-hand side terms.

To obtain satisfactory computational results, meshes with sufficiently fine resolutions are needed for

both the adatom diffusion equation and the boundary evolution equation. Thus, it is indispensable to use
adaptivity in order for the method to be efficient. We use simple error indicators within an h-adaptive
method to locally increase the spatial resolution.

We apply our method to the following three test problems, and our numerical results demonstrate that

the method is stable, efficient, and accurate enough to handle the island growth over a sufficiently long time

period:

1. A pure geometrical problem of the evolution of the boundaries that is governed by either the motion by

mean curvature or the motion by surface diffusion or by the combination of these two. Our numerical

results show the expected smoothing properties of these motion laws;
2. A simplified model in which the coefficients of desorption and kinetic attachment–detachment are set to

be zero, so that islands cannot grow and the mass increases in time linearly due to a constant deposition

flux rate. Our method is found to yield this mass balance consistently;

3. The stability of a growing circular island. This problem has been analyzed rigorously in [23]. Our method

gives numerical result that agrees with the theory.

Besides these test problems, the method is used to study the influence of the one-dimensional ‘‘surface’’

diffusion term in the velocity law on the growing of a single island. It is also applied to a situation with more

than one island. At this stage, our method is not capable of handling topological changes of the moving
boundaries in the nucleation and coalescence of adatom islands.

Recently, level-set based finite difference methods have been developed for the simulation of island

dynamics in epitaxial growth [8,10,16,26,32]. Such a method is particularly efficient in handling topological

changes. However, in treating the surface diffusion using such a method, fourth-order derivatives of a level-

set function extended from the boundaries must be discretized by a finite difference scheme on a fixed

Cartesian grid [11,21,24,38]. An alternative method based on a phase-field approach was recently intro-

duced in [25,33]. Due to the diffuse interface approximation, topological changes can be also handled by

this approach. The use of an adequate degenerate mobility function in such a phase-field model further-
more allows the approximation of the Ehrlich–Schwoebel barrier. But the surface diffusion along edges is

until now not included. While our method presented in this work cannot handle topological changes at the
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current stage, it has the advantage of exploiting the variational structure of the model to reduce the order of

derivatives in discretization. This is evident, for instance, in the treatment of the surface diffusion term.

Moreover, our method can be relatively easily extended to solve additional systems of equations such as the
elasticity problem that can be important in determining the dynamics of heterogeneous epitaxial growth –

the growth of material systems in which thin films and substrates have different lattice structures.

In Section 2, we describe the problem. In Section 3, we describe our methods of discretization for both

the adatom diffusion equation and the boundary evolution equation. In Section 4, we describe imple-

mentational details such as the adaptivity, element marking, and numerical integration. In Section 5, we

present our numerical results. Finally, in Section 6, we draw conclusions.
2. Problem description

Consider the dynamics of adatom islands in an epitaxially growing thin film. An island or terrace is

a portion of crystal layer that is one atomic layer higher than the immediate neighboring part of the

film surface. Mathematically, we denote by X � R2 the projected domain of the film surface in a two-

dimensional Cartesian coordinate system, and assume that X is independent of time t. We denote also

by X0 ¼ X0ðtÞ � R2 the projected domain of the substrate or the exposed film surface with the smallest

layer thickness, and by Xi ¼ XiðtÞ � R2; i ¼ 1; . . . ;N ; that of the islands or terraces of height i relative
to X0 at time t, respectively. Thus, N þ 1 is the total number of layers that are exposed on the film

surface. Note that, since the height of neighboring terraces differs only by one atomic layer, we con-

clude that

XiðtÞ \ XjðtÞ ¼ ; if and only if ji� jjP 2:

We denote further the corresponding island boundaries by

CiðtÞ ¼ XiðtÞ \ Xi�1ðtÞ; i ¼ 1; . . . ;N ;

see Fig. 2. We have that

X ¼
[N
i¼0

XiðtÞ:
Fig. 2. Schematic description of terraces Xi ¼ XiðtÞ and boundaries Ci ¼ CiðtÞ.
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Denote by qi ¼ qiðx; tÞ the adatom density on terrace XiðtÞ ði ¼ 0; . . .NÞ at time t. The adatom diffusion

on a terrace is described by the diffusion equation for the adatom density [6,9,15,22,28]

otqi � DDqi ¼ F � s�1qi in XiðtÞ; i ¼ 0; . . . ;N ; ð2:1Þ

where D > 0 is the diffusion constant, F is the deposition flux rate which shall be assumed to be a positive

constant, and s�1 > 0 is the constant desorption rate.

We assume that the adatom density satisfies the following kinetic boundary conditions on the island
boundary CiðtÞ for i ¼ 1; . . . ;N [1,6,9,15,22,27,28]:

qþi :¼ �Drqi �~ni � viqi ¼ kþðqi � q�ð1þ ljiÞÞ; ð2:2Þ
q�i :¼ Drqi�1 �~ni þ viqi�1 ¼ k�ðqi�1 � q�ð1þ ljiÞÞ; ð2:3Þ

where qþi and q�i are (normal) fluxes from the upper terrace XiðtÞ and the lower terrace Xi�1ðtÞ, respectively,
to the boundary CiðtÞ; ~ni and ji are the unit normal pointing from the upper to lower terraces and the

curvature of the boundary CiðtÞ, respectively; vi is the normal velocity of the island CiðtÞ with the con-
vention that vi > 0 if the movement of CiðtÞ is in the direction of ~ni; kþ and k� are the kinetic attachment

rates from the upper and lower terraces to the boundary CiðtÞ, respectively; and q� and l are two positive

constants. In general, we have 0 < kþ6 k� by our notation, where the strict inequality kþ < k� models the

Ehrlich–Scwhoebel effect. The constant q� can be either a thermodynamic equilibrium value or a kinetic

steady-state value, and the constant l can be proportional to the stiffness of the boundary CiðtÞ or can come

from a transition energy barrier, see [1,6,7,9,27,28].

We note that the convection terms qivi and qi�1vi in the fluxes qþi and q�i defined in (2.2) and (2.3),

respectively, are often neglected in the literature due to the smallness of the normal velocity. However, in
some growth cases, these convection terms can be important to the growth stability [14,19]. In principle,

they are necessary to obtain the conservation of mass in a region that includes a portion of the boundaries.

Moreover, these terms can be incorporated naturally into a variational formulation of the diffusion

problem, cf. Section 3.1.

For the motion of the moving boundaries, we assume the following law for the normal velocity vi of the
island boundary CiðtÞ [9,18,22,27,28,30]:

vi ¼ qþi þ q�i þ mossji; ð2:4Þ

where m is a positive constant and oss denotes the second-order tangential derivative along the boundaries.

The term ossji represents the one-dimensional ‘‘surface’’ diffusion. The coefficient m is related to the line

tension and edge diffusion [9]. For m ¼ 0, the formula reduces to

vi ¼ qþi þ q�i : ð2:5Þ

In this case, the diffusion along terrace boundaries is not taken into account.

We assume a flux-free boundary condition for the adatom density on the boundary of the film domain

oq0

on
¼ 0 at oX for all t > 0; ð2:6Þ

where the normal derivative corresponds to the unit exterior normal~n to the boundary oX. We also assume

that the initial islands Xið0Þ ði ¼ 0; . . . ;NÞ along with their corresponding boundaries Cið0Þ ði ¼ 1; . . . ;NÞ
are given. Moreover, we assume that initial adatom density is given by

qiðx; 0Þ ¼ �qiðxÞ 8x 2 Xið0Þ; i ¼ 0; . . . ;N ð2:7Þ

for some given function �qi.



414 E. B€ansch et al. / Journal of Computational Physics 194 (2004) 409–434
Finally, we assume no topological changes, i.e., islands neither nucleate nor coalesce, in the regime of

island dynamics under consideration.
3. Variational formulation and finite element discretization

We derive a weak formulation for the time-dependent diffusion equation and use the first-order implicit

scheme to discretize the time derivative. In each time step:

1. We update the discrete boundaries by solving a geometric partial differential equation (PDE) based on

the adatom densities and the discrete boundaries from the previous time step;

2. We solve the diffusion equation to update the adatom densities using the adatom densities and the com-
puted discrete boundaries from the previous time step.

In Section 3.1, we describe the weak formulation for the time-dependent diffusion equation and the finite

element discretization for the diffusion equation in each time step. In Section 3.2, we present our algorithm

for the geometric PDE of the boundary evolution.
3.1. Adatom diffusion

Fix i 2 f0; 1; . . . ;Ng. Assume that qi is smooth in Xi ¼ XiðtÞ. Multiplying both sides of the
diffusion equation in (2.1) by a smooth, time-independent, test function /, and integrating by parts, we

get Z
Xi

otqi/þ
Z
Xi

Drqi � r/�
Z
Ci

Drqi �~ni/þ
Z
Ciþ1

Drqi �~niþ1/ ¼
Z
Xi

F/�
Z
Xi

s�1qi/: ð3:1Þ

Here and below, obvious modifications should be made for i ¼ 0 and i ¼ N . Notice that for a moving

smooth domain xðtÞ and a smooth function nðx; tÞ for x 2 xðtÞ,

d

dt

Z
xðtÞ

n ¼
Z
xðtÞ

otnþ
Z
oxðtÞ

nu;

where u is the normal velocity of the moving boundary oxðtÞ. Applying this formula to the corresponding

term in (3.1) and using the boundary conditions (2.2) and (2.3), we obtain

d

dt

Z
XiðtÞ

qi/þ
Z
XiðtÞ

Drqi � r/þ
Z
XiðtÞ

s�1qi/þ
Z
CiðtÞ

kþðqi � q�ð1þ ljiÞÞ/

þ
Z
Ciþ1

k�ðqi � q�ð1þ ljiþ1ÞÞ/ ¼
Z
XiðtÞ

F/:

Let Dt > 0 be a small time step. Then,

d

dt

Z
XiðtÞ

qi/ �
1

Dt

Z
XiðtÞ

qiðx; tÞ/ðxÞ
"

�
Z
Xiðt�DtÞ

qiðx; t � DtÞ/ðxÞ
#
:

Now, split the time interval by discrete time instants 0 ¼ t0 < t1 < � � � and define the time steps

Dtm :¼ tmþ1 � tm ðm ¼ 0; 1; . . .Þ. Using the approximations Xm
i � XiðtmÞ and Cm

i � CiðtmÞ, we have the fol-

lowing formulation of the time discretization problem.
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Problem 3.1. Set q0
i ¼ �qi ði ¼ 0; . . . ;NÞ. For m ¼ 0; 1; . . . ; find adatom densities qmþ1

i 2 H 1ðXmþ1
i Þ such that

1

Dtm

Z
Xmþ1
i

qmþ1
i /

"
�
Z
Xm
i

qm
i /

#
þ
Z
Xmþ1
i

Drqmþ1
i � r/þ

Z
Xmþ1
i

s�1qmþ1
i /

þ
Z
Cmþ1
i

kþðqmþ1
i � q�ð1þ ljmþ1

i ÞÞ/þ
Z
Cmþ1
iþ1

k�ðqmþ1
i � q�ð1þ ljmþ1

iþ1 ÞÞ/

¼
Z
Xmþ1
i

F/ 8/ 2 H 1ðXmþ1
i Þ; i ¼ 0; . . . ;N ;

where jmþ1
i and jmþ1

iþ1 denote the curvature of Cmþ1
i and Cmþ1

iþ1 , respectively.

At each time step, we need to solve an elliptic problem with curved boundaries. To avoid the complexity
in the spatial discretization near such curved boundaries, we use an extension method. Let qm

i ðmP 0Þ be
the trivial extension of qi to the whole domain X, i.e.,

qm
i ðxÞ ¼ qiðxÞ for x 2 Xm

i and qm
i ðxÞ ¼ 0 for x 2 X n Xm

i :

Furthermore, define for each mP 0 and 06 i6N

Di;m ¼
D in Xm

i ;
0 in X n Xm

i ;

�
Fi;m ¼

F in Xm
i ;

0 in X n Xm
i ;

�
s�1i;m ¼

s�1 in Xm
i ;

0 in X n Xm
i :

�

Extend also the initial densities �qi, still denoted by �qi, by �qi ¼ 0 in X n Xið0Þ. Now, replace D, s�1, F , and Xm
i

in Problem 3.1 by Di;mþ1, s�1i;mþ1, Fi;mþ1, and X, and solve the corresponding problem on the whole domain for

all test function / defined on X

Z
X

qmþ1
i � qm

i

Dtm
/þ

Z
X
Di;mþ1rqmþ1

i � r/þ
Z
X
s�1i;mþ1q

mþ1
i /þ

Z
Cmþ1
i

kþðqmþ1
i � q�ð1þ ljiÞÞ/

þ
Z
Cmþ1
iþ1

k�ðqmþ1
i � q�ð1þ ljiþ1ÞÞ/

¼
Z
X
Fi;mþ1/ 8/ 2 H 1ðXÞ; i ¼ 0; . . . ;N : ð3:2Þ

To discretize in space, let Tm
h be an admissible shape-regular triangulation of X at time instant tm

[5, II.5]. Notice that we do not assume that the triangulation is uniform, allowing thus for highly

graded local mesh refinement. We will use the finite element space of globally continuous, piecewise linear

elements

Vm
h ¼ fvh 2 C0ðXÞ : vhjT 2 P1 8T 2Tm

h g;

where P1 denotes the set of all polynomials of total degree 6 1.

Denote by Pm : C0ðXÞ ! Vm
h the usual Lagrange interpolation operator. With this setting, the space

discretization of Problem 3.1 based on our method of extension can be summarized as follows.

Problem 3.2. Let q0
i;h ¼ P0�qi ði ¼ 0; . . . ;NÞ. For m ¼ 0; 1; . . . ; determine the discrete adatom densities

qmþ1
i;h 2 Vmþ1

h for i ¼ 0; . . . ;N by
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Z
X

qmþ1
i;h � qm

i;h

Dtm
/h þ

Z
X
Di;mþ1rqmþ1

i;h � r/h þ
Z
Cmþ1
i;h

kþðqmþ1
i;h � q�ð1þ ljmþ1

i;h ÞÞ/h

þ
Z
Cmþ1
iþ1;h

k�ðqmþ1
i;h � q�ð1þ ljmþ1

iþ1;hÞÞ/h þ
Z
X
s�1i;mþ1q

mþ1
i;h /h ¼

Z
X
Fi;mþ1/h 8/h 2 Vmþ1

h

with jmþ1
i;h and jmþ1

iþ1;h the discrete curvatures of Cmþ1
i;h and Cmþ1

iþ1;h, respectively, defined in Problem 3.5.

In the rest of this subsection, we fix a time step m and drop the subscript and superscript mþ 1, when no

confusion arises. Let ð/kÞ
L
k¼1 be the standard nodal basis of the finite element space Vh, where L is the

dimension of Vh. Expand qmþ1
i;h as

qmþ1
i;h ¼

XL
k¼1

rk/k

for some Ri ¼ ðr1; . . . ; rLÞt 2 RL, where the superscript t denotes the transpose matrix. Define the following

mass and stiffness matrices and load vectors:

M ¼ ðMklÞ; Mkl ¼ /k;/lð Þ; M i ¼ ðMi;klÞ; Mi;kl ¼ s�1i /k;/l

� �
;

MCi ¼ ðMCi
kl Þ; MCi

kl ¼ h/k;/liCi
; Ai ¼ ðAi;klÞ; Ai;kl ¼ Dir/k;r/lð Þ;

F i ¼ ðFi;lÞ; Fi;l ¼ Fi;/lð Þ; FCi ¼ ðF Ci
l Þ; F Ci

l ¼ hq�ð1þ lji;hÞ;/liCi
;

where the index ranges are 16 k; l6L and h�; �iCi
stands for the L2 inner product over the current interface

Ci ¼ Ci;h and ð�; �Þ stands for the L2 inner product over the domain X. The following algorithm is the matrix
form of Problem 3.2.

Algorithm 3.1. For m ¼ 0; 1; . . . ; find Rmþ1
i 2 RL such that

1

Dtm
MRmþ1

i þ AiRmþ1
i þM iRmþ1

i þ kþM
CiRmþ1

i þ k�M
Ciþ1Rmþ1

i

¼ F i þ kþF
Ci þ k�F

Ciþ1 þ 1

Dtm
MRm

i ; i ¼ 0; . . . ;N :

We introduce the following quantities defined on the nodes on the boundaries Ci;h:

ci :¼ kþðqi � q�Þ þ k�ðqi�1 � q�Þ ¼ kþðqi;hjCi;h
� q�Þ þ k�ðqi�1;hjCi;h

� q�Þ: ð3:3Þ

These quantities will enter in the subproblem of moving boundaries.

Remark 3.1 (Number of subproblems). In actual computations, the number of diffusion equations to be
solved can be reduced from the number of layers N þ 1 to at most 2. Indeed, since odd-labeled (or even-

labeled) terraces are non-contiguous, it is enough to work with a single function qodd for all odd i�s and a

single function qeven for all even i�s.
3.2. Boundary evolution

Adding the two boundary conditions (2.2) and (2.3) at CiðtÞ, we get

qþi þ q�i ¼ kþðqi � q�ð1þ ljiÞÞ þ k�ðqi�1 � q�ð1þ ljiÞÞ: ð3:4Þ

This, together with the velocity formula (2.4), leads to the geometric PDE
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vi ¼ kþðqi � q�Þ þ k�ðqi�1 � q�Þ � ðkþ þ k�Þq�lji þ mossji: ð3:5Þ

This equation can be interpreted as an equation for surface diffusion with lower order terms if m > 0, or for
the mean curvature flow with a forcing term if m ¼ 0. For solving such a highly nonlinear fourth-order

(m > 0) or second-order (m ¼ 0) equation, we adapt with modification a variational formulation introduced

for surface diffusion by B€ansch et al. [3], cf. also [12]. By introducing the position vector~xi, the curvature

vector~ji, and the velocity vector~vi, a system of equations for~ji, ji, vi, and~vi can be derived from (3.5). By

the geometric expression~ji ¼ �oss~xi, the velocity law (3.5), and the relations between the vector-valued and

scalar quantities ji ¼~ji �~ni and~vi ¼ vi~ni, we obtain

~ji ¼ �oss~xi; ð3:6Þ
ji ¼~ji �~ni; ð3:7Þ
vi ¼ ci � bji þ aossji; ð3:8Þ
~vi ¼ vi~ni: ð3:9Þ

Here, in addition to ci introduced in (3.3), we use the coefficients

a ¼ mP 0 and b ¼ ðkþ þ k�Þlq�P 0:

Consider the discrete time instant tm and time step Dtm :¼ tmþ1 � tm as in Section 3.1. We represent the

next boundary Cmþ1
i in terms of the current boundary Cm

i by updating the position vectors

~xi  ~xi þ Dtm~vi: ð3:10Þ

In the time discretization, all the geometric quantities such as ~ni and ji, and the differentiation oss are

evaluated on the current boundary Cm
i . In contrast to the geometric quantities, the unknowns~ji, ji, vi, and

~vi are treated implicitly. In particular, in view of (3.10), we define

~jmþ1
i :¼ �ossð~xm

i þ Dtm~vmþ1
i Þ: ð3:11Þ

To derive a weak formulation, we proceed similarly as in [12]: multiply (3.7)–(3.9), and (3.11) by test

functions ~w 2 ~H 1ðCiÞ and w 2 H 1ðCiÞ, and use integration by parts for the second-order operator oss. For

simplicity, we have hereafter dropped the superscript mþ 1 for the unknowns~jmþ1
i , etc. Furthermore, using

the notation h�; �i for the L2 inner product over the current interfaces Cm
i , we arrive at the following set of

semi-implicit equations.

Problem 3.3. For m ¼ 1; 2; . . . find ~ji 2 ~H 1ðCm
i Þ, ji 2 H 1ðCm

i Þ, vi 2 H 1ðCm
i Þ, and~vi 2 ~H 1ðCm

i Þ such that

h~ji;~wi � Dtmhos~vi; os~wi ¼ hos~xm
i ; os

~wi 8~w 2 ~H 1ðCm
i Þ;

hji;wi � h~ji �~ni;wi ¼ 0 8w 2 H 1ðCm
i Þ;

hvi;wi þ ahosji; oswi þ bhji;wi ¼ hci;wi 8w 2 H 1ðCm
i Þ;

h~vi;~wi � hvi~ni;~wi ¼ 0 8~w 2 ~H 1ðCm
i Þ:

Note that in the above formulation, the adatom densities on the upper and lower terraces qi and qi�1,

respectively, are needed only for computing ci which is defined in (3.3).

To discretize in space, we consider a polygonal curve Cm
i;h approximating Ci at time tm. The polygonal

segments are thought of as finite elements. Making a customary abuse of terminology, we identify these



418 E. B€ansch et al. / Journal of Computational Physics 194 (2004) 409–434
segments with the corresponding finite element partition. We denote by~ni;h the unit normal to Cm
i;h pointing

to the lower terrace. It is discontinuous across inter-element boundaries. Denote by Wm
h � H 1ðCm

i;hÞ the
finite element space of globally continuous, piecewise linear functions with corresponding nodal basis
functions ðwkÞ

K
k¼1, where K is the number of degrees of freedom. By ~Wm

h � ~H 1ðCm
i;hÞ we denote the finite

element space of vector-valued functions with nodal basis functions ð~wq
kÞ

q¼1;2
k¼1;...;K , where

~wq
k ¼ wk~eq with wk the

scalar basis function defined above and ð~e1;~e2Þ the standard basis in R2.

Upon expanding the functions ~ji, ji, vi,~vi in terms of the basis functions and testing against all discrete

test functions, a discretization of Problem 3.3 is now at hand.

Problem 3.4. Find ~ji;h ¼~jm
i;h 2 ~Wm

h , ji;h ¼ jm
i;h 2Wm

h , vi;h ¼ vmi;h 2Wm
h , and~vi;h ¼~vmi;h 2 ~Wm

h such that

h~ji;h; ~whi � Dtmhos~vi;h; os~whi ¼ hos~xmi ; os~whi 8~wh 2 ~Wm
h ;

hji;h;whi � h~ji;h �~ni;h;whi ¼ 0 8wh 2Wm
h ;

hvi;h;whi þ ahosji;h; oswhi þ bhji;h;whi ¼ hci;whi 8wh 2Wm
h ;

h~vi;h;~whi � hvi;h~ni;h; ~whi ¼ 0 8~wh 2 ~Wm
h :

This discrete scheme is now translated into a matrix–vector system by using the nodal bases ðwkÞ and
ð~wq

kÞ to obtain the mass, stiffness, and normal matrices, and the load vector

M ¼ ðMklÞ; Mkl ¼ hwk;wli; ~M ¼ ð~MklÞ; ~Mkl ¼ ðMqr
kl Þ ¼ ðdqrMklÞ;

A ¼ ðAklÞ; Akl ¼ hoswk; oswli; ~A ¼ ð~AklÞ; ~Akl ¼ ðAqr
klÞ ¼ ðdqrAklÞ;

G ¼ ðGkÞ; Gk ¼ hci;wki; ~N ¼ ð~NklÞ; ~Nkl ¼ ðNq
klÞ ¼ ðhwk;wln

q
i;hiÞ;

where the index ranges are 16 k; l6K and 16 q; r6 2, dqr ¼~eq �~er is the Kronecker symbol, and

nqi;h ¼~ni;h �~eq is the qth spatial component of the normal.

An alternative way of looking at the system is given by ordering the coefficient vector ðxqkÞ
q¼1;2
k¼1;...;K cor-

responding to an element~xh 2 ~Wm
h as a column vector ~X ¼ ðX t

1;X
t
2Þ

t
, where Xq are the (column) vectors of

coefficients corresponding to spatial components of ~X . With this description, we can write

~A ¼ A 0

0 A

� �
; ~M ¼ M 0

0 M

� �
; ~N ¼ N1

N2

� �
; ð3:12Þ

where all the entries are square matrices in RK�K , with the spatial components Nq ¼ ðNq
klÞ of the normal

matrix being some kind of ‘‘weighted’’ mass matrices. The linear system takes now the following matrix

form.

Algorithm 3.2. Find ~Ki; ~V i 2 R2�K, Ki; Vi 2 RK such that

~M 0 0 �~N
0 M �~N t 0

�Dtm~A 0 ~M 0

0 aAþ bM 0 M

0
BB@

1
CCA

~V i

Ki
~Ki

Vi

0
BB@

1
CCA ¼

0

0
~A~X m

i

G

0
BB@

1
CCA:

With this arrangement, a Schur complement equation for ~Ki; Vi reads

S
~Ki

Vi

� �
¼

~A~X m
i

G

� �
;

where
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S ¼
~M 0

0 M

� �
� �Dtm~A 0

0 aAþ bM

� �
~M 0

0 M

� ��1
0 �~N
�~N t 0

� �

¼
~M �Dtm~A~M�1~N

aAM�1~N t þ b~N t M

 !
:

The above formulation in turn gives rise to the final Schur complement equation for the single unknown Vi :

Dtm aAM�1~N t
��

þ b~N t
�
~M�1~A~M�1~N þM

�
Vi ¼ G� aAM�1~N t

�
þ b~N t

�
~M�1~A~X m

i : ð3:13Þ

In the case of m ¼ 0 (i.e., a ¼ 0), the equation for Vi reduces to

Dtmb~N
t ~M�1~A~M�1~N

�
þM

�
Vi ¼ G� b~N t ~M�1~A~X m

i : ð3:14Þ

The linear systems in both cases, (3.13) and (3.14), are uniquely solvable. We show this for (3.13), the

result for (3.14) follows as a special case. Introducing the symmetric non-negative matrix

L ¼ ~N t ~M�1~A~M�1~N ¼
X2
q¼1

NqM
�1AM�1Nq:

The matrix in the left-hand side of (3.13), which we denote by T, can be written as

T ¼ Dtm aAM�1�
þ bI

�
LþM :

It is enough to show that T is invertible. To this end, we show that if for some V 2 RK we have TV ¼ 0 then

V must be 0. Assuming TV ¼ 0 it ensues that W tTV ¼ 0, for any W 2 RK . In particular, for W ¼M�1LV
we obtain

0 ¼ DtmaV tLM�1AM�1LV þ DtmbV tLM�1LV þ V tLV P 0; ð3:15Þ

by symmetry and non-negativity of the involved matrices. It follows that V tLV ¼ 0. Again by the symmetry

and non-negativity of L we conclude that LV ¼ 0. This implies that MV ¼ TV which we assumed to be

zero. Since M is invertible, it follows that V ¼ 0. Therefore, T is invertible. Backsubstituting Vi into the

linear system in Algorithm 3.2 and then solving for ~Ki and likewise for Ki and ~V i we see that the linear

system is uniquely solvable.
Once Vi is obtained by solving (3.13) or (3.14), the unknown ~V i is easily computed by solving

~M~V i ¼ ~NVi ; ð3:16Þ
~M being invertible, and then ~X i is updated through

~X i  ~X i þ Dtm~V i: ð3:17Þ

The curvature, which is needed as data in the adatom diffusion problem, is now computed for accuracy

reasons on the new interface Cmþ1
i;h instead of the old interface Cm

i;h. To this end, we use the same formulation

as above but with all the geometric quantities defined for Cmþ1
i;h replacing Cm

i;h. We obtain the following
problem formulation.

Problem 3.5. Find ~ji;h ¼~jmþ1
i;h 2 ~Wmþ1

h and ji;h ¼ jmþ1
i;h 2Wmþ1

h with
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h~ji;h; ~whi ¼ hos~xmþ1
i ; os~whi 8~wh 2 ~Wmþ1

h ;

hji;h;whi � h~ji;h �~ni;h;whi ¼ 0 8wh 2Wmþ1
h :

Again, the system can be written equivalently in matrix form, where the matrices are now defined in

terms of the basis functions on Cmþ1
i;h .

Algorithm 3.3. Find ~Ki and Ki such that

M �~N t

0 ~M

� �
Ki
~Ki

� �
¼ 0

~A~Xmþ1
i

� �
:

This leads to

Ki ¼ �M�1~N ~M�1~A~Xmþ1
i : ð3:18Þ

In summary, the subproblem of boundary evolution consists of solving N decoupled problems for each
interface Ci;h, i ¼ 1; . . . ;N , according to Algorithms 3.2 and 3.3. For the adatom diffusion problem the new

interfaces Cmþ1
i;h and the curvatures jmþ1

i;h will enter.
4. Implementation

We implement our numerical method using ALBERT, an adaptive finite element software for scientific

computation [35]. The program for the two-dimensional adatom diffusion and that for the one-dimensional
boundary evolution are coupled via a TCP/IP port. All matrices are assembled using the standard

assembling tools of ALBERT as well as the methods described below.

4.1. Adaptivity for adatom diffusion

To obtain satisfactory computational results, a mesh with a sufficiently fine resolution near the island

boundaries is needed. Noting that a uniform refinement would be prohibitive from the computational point

of view, we are naturally led to adopt local mesh refinement. Since the island boundaries are moving, it is
indispensable to use some adaptive strategy for local mesh refinement and coarsening. At every time step,

the 2d finite element mesh from the previous time step is locally refined and/or coarsened. Every element in

the mesh is marked for being refined, coarsened, or left unchanged. The actual mesh modification is then

performed within the programming environment ALBERT [35] that uses the so-called bisection method to

locally modify meshes.

The criterion for refinement is purely geometric: the 2d mesh is refined near the boundaries Cm
i;h until the

mesh size for both the 1d and 2d meshes are locally of the same order. More precisely, the 2d mesh is refined

until no 1d element is fully contained in any 2d element. This criterion can be easily satisfied by traversing
Cm

i;h and refining all visited elements of the 2d mesh Tm
X with the element size larger than the 1d mesh size.

Elements may be further refined to satisfy the assumptions (A) and (B) in Section 4.3.

We define qhðx; tÞ as the overall adatom density by

qhðx; tÞ ¼ qi;hðx; tÞ for x 2 XiðtÞ; i ¼ 0; . . . ;N :

Here and below in this section, when no confusion arises, we use Xi ¼ XiðtÞ to denote both the original

domain and its finite element approximation determined by Ci;hðtÞ. We use an L2-like error indicator for

local mesh coarsening. For every element T , we define
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gT ðqhÞ :¼
X
e2oT

Z
e
h3

oqh

one

� 	









2

 !1=2

;

where ½oqh=one� denotes the jump of the normal derivative of qh across an edge e � oT . This can be used to

define an indicator for the error kq� qhk on the whole domain

gðqhÞ :¼
X
T2Tm

X

g2T ðqhÞ

0
@

1
A

1=2

:

The criterion for coarsening is based on an equidistribution strategy, which attempts to enforce

gT ðqhÞ ¼ gT 0 ðqhÞ for all T ; T 0 2Tm
X. If this condition was enforced, at least approximately, then we would

have

gðqhÞ � N 1=2
m gT ðqhÞ;

where Nm is the number of triangular finite elements in Tm
X. We thus mark an element T 2 T m

X for coars-
ening, if

gT ðqhÞ6 h
gðqhÞ
N 1=2

m

with some h 2 ð0; 1Þ. Notice that these estimators are used only for the coarsening criterion. Notice also
that we do not refine the time step adaptively.

4.2. Adaptivity for boundary evolution

A simple adaptive strategy is used for the boundary evolution. The 1d finite element mesh for the initial

boundaries consists of elements that have almost a uniform element size. This size is kept approximately

constant during the time evolution. Nodes are inserted in or removed from the mesh in each time step

according to the criterion that the distance between neighboring nodes is almost a constant. Such an
adaptive method is efficient and accurate as long as the boundary curvature is not too large. If the curvature

will be large other refinement methods can be used.
4.3. Element marking

In the weak formulation (3.2) for the adatom diffusion, the extended diffusion constant Di, the extended

deposition flux rate Fi, and the extended desorption rate s�1i are piecewise constant functions. Here, we drop

the time-step index m. They are discontinuous across the boundaries Ci;h and Ciþ1;h. Thus, to track the value
of such piecewise constant functions, we need to mark each element to track the information whether this

element lies entirely in Xi or it is crossed by a boundary Ci;h. In addition, such element marking can keep

track of the heights of terraces XiðtÞ ð06 i6NÞ.
To proceed, we use the orientation of the boundaries Ci;h to generate the marking of the initial 2d finite

element triangulation, cf. Fig. 3 (left), where all the inner elements belong to the upper terrace and all the

outer elements belong to the lower terrace, cf. Fig. 3 (right). This information is tracked through the

simulation. Using a marker markðT Þ, we mark every element T by

markðT Þ ¼ i if T � Xi;
iþ 1=2 if intðT Þ \ Ciþ1;h 6¼ ;;

�



Fig. 3. Marking of elements T in a triangulation Th near a boundary Ciþ1;h.

422 E. B€ansch et al. / Journal of Computational Physics 194 (2004) 409–434
where intðT Þ denotes the interior of T . We assume:

(A) for every element T , there is at most one i such that intðT Þ \ Ci;h 6¼ ;;
(B) for every terrace Xi, there is at least one element T such that T � Xi;

(C) any element with mark iþ 1=2 is adjacent to exactly one element with mark i or one element with mark

iþ 1.

By assumptions (A) and (B), the marking of all elements is well defined for sufficiently fine meshes. As-

sumption (C) can always be satisfied by moving the intersection point of the 1d and 2d meshes, if it lies on a
2d node or two subsequent intersection points lie on the same 2d edge. The moving is only done virtually.

Note that assumption (C) implies that each element marked by iþ 1=2 has either one inner or one outer

neighbor, marked by iþ 1 or i, respectively, cf. Fig. 3 (right).

In each time step, the marking changes according to the evolution of the moving boundaries Ci;h. During

refinement, the marking is passed form parent elements to child elements. The marking of elements ob-

tained by coarsening is reset to �1. It is calculated in the next time step again using the marking of the

neighboring elements. With this strategy, the information of the terrace height can be tracked. The

piecewise constants Di, Fi and s�1i are now well defined due to the marking of the elements. In addition, for
elements marked by iþ 1=2, the orientation of Ciþ1;h indicates which part of the element belongs to Xi and

which part to Xiþ1.

Marking algorithm 1. Start with the initial triangulation T0
X and the initial boundary C0

iþ1;h. Set m ¼ 0.

1. for T 2Tm
X

set markðT Þ ¼ �1
2. for intðT Þ \ Cm

iþ1;h 6¼ ;
set markðT Þ ¼ iþ 1=2
set markðouter neighbor of T Þ ¼ i
or

set markðinner neighbor of T Þ ¼ iþ 1
3. while 9 T s:t: markðT Þ ¼ �1

for T 2Tm
X

if markðT Þ ¼ �1 and markðneighbor of T Þ 6¼ �1
set markðT Þ ¼ markðneighbor of T Þ

4. perform time step, adapt mesh, set m ¼ mþ 1

5. for T 2Tm
X

if markðT Þ ¼ iþ 1=2
reset markðT Þ ¼ �1

6. go to 2
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With this algorithm, each element in the initial mesh is marked. However, in each time step, marks

change only for elements T with intðT Þ \ Cm
i;h 6¼ ;, and elements T whose marks are reset to �1 due to

coarsening or intðT Þ \ Cm�1
i;h 6¼ ;. To illustrate our method of marking, we show in Fig. 4 a refined 2d mesh,

a 1d mesh of a boundary, and the marking of the elements, for which different colors or grey scales rep-

resent different markers. The element marking can be viewed as a discrete height function for the growing

film.
4.4. Numerical integration

The assembly of the finite element system for Problem 3.2 involves several non-standard integrals. One

class of such integrals are those involving coefficients such as Di, Fi, and s�1i that are discontinuous within
one element. Here, again, we drop the index m. Another class of such integrals are the boundary integrals

that appear in the diffusion equation, coupling the adatom density and the moving boundary.

Let us first treat the integrals involving discontinuous coefficients. We need to evaluate the integrals

Z
T
Dir/k � r/l;

Z
T
Di�1r/k � r/l;

Z
T
Fi/l;

Z
T
Fi�1/l;

Z
T
s�1i /l;

Z
T
s�1i�1/l

over an element T with intðT Þ \ Ci;h 6¼ ;. These integrals are of the form
R
/k with / a smooth function and

k a discontinuous function,

k ¼ ki�1 in T \ Xi�1;
ki in T \ Xi

�

with some ki�1; ki 2 R, cf. Fig. 5. We use the following integral approximation due to [39], cf. Fig. 5:Z
T
k/ �

Z
DðDBEÞ

ki/þ
Z
�ðADECÞ

ki�1/ ¼
Z
DðDBEÞ

ki/þ
Z
T
ki�1/�

Z
DðDBEÞ

ki�1/:

Note that this formula avoids the explicit integration over quadrilaterals and requires only integration over

triangles, and can be thus performed in a nearly standard way.

The line integration over a boundary Ci;h in the adatom diffusion problem is treated by subdividing the
boundary into polygons, see Fig. 6. A polygon is defined by the intersection points of Ci;h and boundaries of
Fig. 4. A refined 2d mesh, a 1d mesh of a boundary, and element marking.



Fig. 5. Element T , boundary Ci;h, and definition of k, Di, Fi, and s�1i .

Fig. 6. Element T , boundary Ci;h, and line integration path.
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the element T , and points of Ci;h where the parameterization changes. The integration can then be

performed in a standard way by calculating integrals of piecewise linear functions. See [34] for further

details.
4.5. Algorithm

Combining Algorithm 3.1 for the adatom diffusion and Algorithms 3.2 and 3.3 for the boundary evo-
lution, as well as the routines described in Sections 4.1–4.3 and 4.4, we arrive at the following algorithm:

Algorithm 4.1. Let q0
i;h, C

0
i;h and X0

i be given. Mark all elements according to their positions related to X0
i .

Define Di, Fi and s�1i . Set m ¼ 0.

1. compute boundaries Cmþ1
i;h and curvatures jmþ1

i;h

1.1. compute vmþ1i;h ,~vmþ1i;h , and Cmþ1
i;h

1.2. refine and coarse Cmþ1
i;h

1.3. compute jmþ1
i;h on Cmþ1

i;h

2. compute adatom densities qmþ1
i;h

2.1. refine and coarse Tm
h

2.2. update marking of elements and definition of Di, Fi and s�1i

2.3. compute qmþ1
i;h

2.4. compute ci ¼ ciðqmþ1
i;h ; qmþ1

i�1;hÞ
3. set m :¼ mþ 1, go to 1
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5. Numerical results

We first present numerical results on the geometric motion of curves in Section 5.1 and on mass balance
and conservation of area in Section 5.2. We then, in Section 5.3, investigate numerically the growth of a

single circular island, and compare the numerical results with the known analytical solutions. Finally, in

Section 5.4, we apply our numerical algorithm to simulate the growth of a non-circular island, and compare

the numerical results for the case with and without surface diffusion.

Unless otherwise stated, we use the following data in all the numerical simulations:

• parameters: D ¼ 105; F ¼ 1; q� ¼ 10�5; kþ ¼ k� ¼ 105; l ¼ 1; m ¼ 10;

• domain: X is a circular domain with radius 3;

• number of elements of the initial 1d finite element mesh: 128;
• time step: 10�6 with surface diffusion, 10�4 without surface diffusion.

The unit of length is the substrate lattice spacing. Thus, the deposition rate F denotes the number of atoms

deposited per unit time and adsorption site and D is the ‘‘hopping rate’’.

5.1. Geometric motion of curves

Our first test example is a purely geometric motion of curves governed by Problem 3.3 in Section 3.2,

decoupled from the adatom diffusion. Choosing the parameters a, b and ci in a suitable way, we apply the
algorithm to the following geometric evolution equations:

Case 1: mean curvature flow: a ¼ 0, b ¼ 1 and ci ¼ 0;

Case 2: surface diffusion: a ¼ 1, b ¼ 0 and ci ¼ 0;

Case 3: surface diffusion and mean curvature flow: a ¼ 1, b ¼ 1 and ci ¼ 0.

Rectangle. Starting with a rectangle as initial curve, we see that all three geometric motions will smooth the

curve to a circle. Fig. 7 shows eight snapshots of the evolution for each of the three cases. The final times are

chosen as the time where the circular shape is reached. As expected, surface diffusion is area preserving, and

mean curvature flow is curve shortening, thus area shrinking. In Case 3, surface diffusion dominates the

smoothing due to its much faster time scale.

Perturbed circle. A further test on the evolution of a perturbed circle is captured in Fig. 8. The perturbation

is a superposition of sines

dðhÞ ¼ 0:05 sinð3hÞ þ 0:1 sinð12hÞ;

where h is the azimuthal angle. As expected, in all three cases, perturbations are smoothed out and high

frequencies are damped faster than low frequencies. But the time-scales for mean curvature flow and

surface diffusion are quite different. In Case 1 (mean curvature flow), the time elapsed until the high fre-
quencies are completely damped is 2:0� 10�2, whereas the time for the decay of the low frequency waves is

0:2. In Case 2 (surface diffusion), the high frequency waves are damped already after 5:0� 10�4, whereas a

circle appears at 5:0� 10�2. The difference of the time-scales for the damping of high and low frequencies is

about 10 for mean curvature and 100 for surface diffusion. This is related to the fourth-order operator of

surface diffusion. Due to these different time scales, surface diffusion dominates the smoothing in Case 3.

This is why there is no qualitative difference between Case 2 and Case 3 (despite the shrinking of the area).

Again the final times are chosen as the time where a circular shape is reached.

5.2. Area conservation and mass balance

We now test our numerical method for the area conservation and mass balance. To this end, we exclude

the desorption and set the attachment rates to be zero: kþ ¼ k� ¼ 0. Thus, the fluxes qþi and q�i to the island



Fig. 7. Geometric motion of a rectangle.
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boundaries are zero. Consequently, the area of the island should not increase. In fact, in this case we have

for any i with 06 i6N ,

d

dt
jXiðtÞj ¼

d

dt

Z
XiðtÞ

1 ¼
Z
CiðtÞ

vi �
Z
Ciþ1ðtÞ

viþ1 ¼
Z
CiðtÞ

mossji �
Z
Ciþ1ðtÞ

mossjiþ1 ¼ 0; ð5:1Þ



Fig. 8. Geometric motion of a perturbed circle.
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where obvious modifications are needed for the case i ¼ 0 and i ¼ N . This shows that the area of all islands

of the same height i should be a constant. Moreover, the mass of the islands of height i should increase

linearly due to the deposition of material with a constant flux rate F . Indeed, observing that qþi ¼ q�i ¼ 0

for all i ¼ 0; . . . ;N , and using (2.2)–(2.4) and (5.1), we obtain
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d

dt

Z
XiðtÞ

qiðtÞ ¼
Z
Xi

oqi

ot
þ
Z
Ci

viqi �
Z
Ciþ1

viþ1qi ¼
Z
Xi

ðDDqi þ F Þ þ
Z
Ci

viqi �
Z
Ciþ1

viþ1qi

¼ F jXij þ
Z
Ci

Drqi �~ni �
Z
Ciþ1

Drqi �~niþ1 þ
Z
Ci

viqi �
Z
Ciþ1

viþ1qi ¼ F jXij ¼ F jXið0Þj:

Therefore, the mass on the islands of height i isZ
XiðtÞ

qiðtÞ ¼ F jXið0Þjt þ
Z
Xið0Þ

qið0Þ: ð5:2Þ

Furthermore, due to the no-flux boundary condition on oX, the mass in the whole system increases linearlyZ
X
qðtÞ ¼ F jXjt þ

Z
X
qð0Þ: ð5:3Þ

Under the assumptions made in this section, we numerically compute the area and mass at different times

for a single, growing island (N ¼ 1). We consider two different initial configurations X1ð0Þ: (a) a circular

island of radius 1 and (b) a perturbed circular island of radius 1 with perturbation

dðhÞ ¼ 0:05 sinð3hÞ þ 0:1 sinð12hÞ:

Area conservation. Fig. 9 shows the simulation of the evolution of the perturbed island boundary at various

times and the computed area at these times.

The area is conserved to a very satisfactory extent: during the time period in which the island smoothes

to a circular island, the area change is less than 0.1%. In the case of a circular island the area is exactly
conserved.

Mass balance. Using the previously derived formulas (5.2) and (5.3), we expect the mass corresponding to

the circular island to beZ
X1ðtÞ

qiðtÞ � 3:14t þ 0:0000314;

and the mass in the whole system to beZ
X
qðtÞ � 28:3t þ 0:000283:

Fig. 10 shows the computed mass for both cases: the circle and the perturbed circle, where the functions f
and g are the least-squares fits of the data to affine functions. The fitted parameters for the growth rate of
Fig. 9. Conservation of the island area in the case kþ ¼ k� ¼ 0.
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Fig. 10. Mass increase: circular island (left) and perturbed circular island (right).
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mass in both cases are in good agreement with the analytical results. The relative error is 0.8% and 1.2% for

the circular island and the perturbed circular island, respectively.

5.3. Growth of a single circular island

We now apply our numerical method to the case of a single, growing circular island and compare the

computational results with the analytic solution of a quasi-stationary approximation. For the purpose of

testing, we assume that there is no desorption.

Consider a single, circular island X1ðtÞ of radius RðtÞ at time t that is growing on a terrace which is a

concentric circular region with radius RX. In the quasi-stationary approximation of the adatom diffusion,

the time dependence in the diffusion equation is dropped. This approximation is valid if F =D	 1. In [23],
an analytic solution is derived under this assumption. With a set of parameters satisfying F =D	 1, we

expect our simulation of the time-dependent diffusion equation to be in good agreement with the analytic

solution of the quasi-stationary diffusion equation.

Using polar coordinates ðr; hÞ with the origin at the center of the circular island, the radially symmetric

solution of the quasi-stationary diffusion equation is given by [23]

q0ðr; tÞ ¼
F
4D

RðtÞ2
�

� r2
�
þ FR2

X

2D
ln

r
RðtÞ

� �
þ q� 1

�
þ l
RðtÞ

�
þ F
2k�

R2
X

RðtÞ

�
� RðtÞ

�
;

q1ðr; tÞ ¼
F
4D

RðtÞ2
�

� r2
�
þ q� 1

�
þ l
RðtÞ

�
þ FRðtÞ

2kþ
:

Since the curvature j1 ¼ 1=RðtÞ of the circular boundary C1ðtÞ is spatially constant, we have ossj1 ¼ 0.

Moreover, since the velocity of the circular boundary C1ðtÞ is given by v1 ¼ R0ðtÞ, we obtain by a simple
calculation that R0ðtÞ ¼ FR2

X=ð2RðtÞÞ, i.e., ðRðtÞ
2Þ0 ¼ FR2

X. Thus, we obtain the dynamic law

RðtÞ2 ¼ FR2
Xt þ Rð0Þ2 ð5:4Þ

for the evolution of the circular boundary C1ðtÞ. Furthermore, at the island boundary C1ðtÞ, we have

q1ðtÞ � q0ðtÞ ¼
F
2
RðtÞ 1

kþ

 
þ 1

k�
� 1

k�

R2
X

RðtÞ2

!
: ð5:5Þ



Table 1

Max-errors between numerical and analytical solution

Time 0.02 0.1 0.3 0.5

Max-error 6� 10�3 7� 10�3 9� 10�3 8� 10�3
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Fig. 11. Adatom density profile (left) and area growth rate (right).

Fig. 12. 2d mesh, 1d boundary and adatom density: with surface diffusion.

430 E. B€ansch et al. / Journal of Computational Physics 194 (2004) 409–434



E. B€ansch et al. / Journal of Computational Physics 194 (2004) 409–434 431
Thus, the adatom density q is discontinuous at C1ðtÞ.
In the simulation the island remains a circle. Fig. 11 shows the profile of the adatom density at various

times. It also shows the growth rate of the island area, where again the function f is the least-squares fit of
the data to an affine function.

According to (5.4), one expects a growth rate of area F jXj ¼ 28:3 as in Section 5.2. Our simulations are

in good agreement with this value, see Fig. 11 (right). The relative error is 0.2%. In agreement with (5.5) the

jump of the adatom density at the island boundary decreases with increasing area of the upper terrace,

changing sign when both terraces exhibit the same area (since kþ equals k�). Due to the jump in the adatom

density max-errors between the numerical and analytical solution are only evaluated in X n dC1ðtÞ with
dC1ðtÞ ¼ fx j RðtÞ � d < jxj < RðtÞ þ dg and d ¼ 2� 10�2. The values are shown in Table 1.

5.4. Smoothing properties and more islands

We apply the numerical method to show the influence of one-dimensional ‘‘surface’’ diffusion on the

smoothing of island boundaries. We study a single growing island evolving from an initially perturbed

circular island.

The perturbation is again a superposition of sines

dðhÞ ¼ 0:05 sinð3hÞ þ 0:1 sinð12hÞ:

We compare results for two different values of m: m ¼ 0:1 and m ¼ 0. From the analysis in [23], we expect the
high frequencies to be rapidly damped, whereas the amplitude of the low frequency waves should decay
Fig. 13. 2d mesh, 1d boundary and adatom density: without surface diffusion.



Fig. 14. Discrete height function and adatom density at various times.
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slowly, as in the pure geometrical case in Section 5.1. Furthermore, in the case with surface diffusion, the

damping of the high frequencies should be much faster.

Our numerical results, shown in Figs. 12 and 13, display the adaptively refined 2d mesh, the computed 1d

boundary Ci;h, and the computed adatom density qh at various time instants for the case with and without

surface diffusion, respectively.

Comparing the two simulations, we see that the influence of surface diffusion is quite similar to that in

the pure geometric setting of Section 5.1. The decay of the high frequency perturbation is accelerated
approximately by a factor of 10. Note that we have chosen the surface diffusion coefficient smaller than in

Section 5.1 ðm ¼ 0:1 instead of m ¼ 1:0Þ.
The growth rate of the islands in the simulations is approximately constant, in agreement with the

expected value we compute f ðtÞ ¼ 28:21 in both cases, which is a relative error of 0.2%.

The final example shows the evolution of three islands. The marking of the elements, representing the

height of the islands and the adatom density, is shown in Fig. 14.
6. Conclusions

In this work, we have developed an adaptive finite element method for the simulation of island dynamics

in epitaxial growth of thin films. Our model is a free or moving boundary type problem that consists of the

diffusion equation for the adatom density and the boundary evolution equation that determines the normal

velocity of the moving boundaries. We focus on two physical mechanisms: the attachment–detachment
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kinetics that is modeled by a two-sided (from upper and lower terraces) Robin type boundary condition for

the adatom density on moving boundaries; and the one-dimensional ‘‘surface’’ diffusion that is modeled by

the one-dimensional ‘‘surface’’ Laplacian of curvature.
To treat the numerical difficulties that arise from modeling the two physical mechanisms, we have de-

veloped a technique of extension for the adatom diffusion and parametric, finite element, front-tracking

method for the boundary evolution. We have also implemented adaptivity, element marking, and numerical

integration on ‘‘irregular’’ elements.

Upon testing on different problems, we find that our method is stable, efficient, and fairly accurate. This

method can be used for simulating island dynamics, in the absence of island nucleation and coalescence, for

a relatively long period of time.
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